
GSAP Introduction
Utilizing JS animation features using GSAP 

Animation tools



GSAP Installation
There are 4 ways to utilize GSAP 
into your project: 
EZIP File
ECDN (Content Delivery Network)
ENPM (Package manager for 
JavaScript Programs) 

The preferred way to use GSAP 
would be the Content delivery 
network, it loads fast and 
prevents delays and errors in 
your project that can happen 
through file 
organization/typos/etc. 



NPM and CDN
NPM:

NPM is the world's largest Software Registry.

The registry contains over 800,000 code packages.

Open-source developers use NPM to share software.

Using the command line terminal inside VSCode, we can access NPM 
to download packages remotely directly into our project folders.

CDN (Content Delivery Network):
A Content Delivery Network (CDN) is a version 

of the jQuery library in the “Cloud.” Using a CDN saves 

us the hassle of downloading/uploading the file ourselves. 



Using the CDN method we covered in our last lecture; we will include the 

complied code within our projects to use GSAP animation triggers within 

our project.

Once you’ve attached GSAP to your project file using the script tag, You 

should create a JS folder in your project to hold your JavaScript Program 

(Project Folder-> js -> gsap.js). You can also place your JavaScript

directly into the “index.html” inside a <script> tag. We will be making a 

separate “js” folder to create better organization of our project. Just 

like how we can add CSS to the “index.html” using the <style> tag but we 

choose to create a separate stylesheet. 

JS folder organization



Setting up animations in your project:
The image I want to animate is placed in a <div> tag in the 
“index.html” file. I then configure the animation inside of my 
“gsap.js” file. 

Using GSAP to trigger animations and interactions

In this screenshot, you can see that my <script> tags are at the bottom of my 
<body> tag. The visual elements like images, divs, and other assets will exist 
above the <script> tag. BOTH should be inside the <body> tag in your 
“index.html”.

The class applied to the image (class=“pic”), will be used in our JavaScript 
file to connect the image to the GSAP animation. 



Animate using GSAP Functions
There are a wide variety of callback methods used in GSAP to trigger an 
animation. Just like how we can skew, distort, scale and fade our objects 
using CSS animation properties. We can use GSAP’s premade animation 
functions to create “tweens”.
Are animations are referred to as tweens because it is animated between 
states. 

To begin our animation journey, we will be focusing on 
gsap.to(), gsap.from(), and gsap.fromTo().



Animation Configuration

When GSAP see’s “.pic” it uses the browsers query selector all method to find elements that match this class 
name. The information inside the curly brackets {} is referred to as the configuration object with destination values 
for any properties we want to animate. 

We can also layer values in a single configuration in this callback, 

ex:



GSAP Ease Visualizer

When creating tween 
animations, easing is a 
convenient way to change the 
timing of your tweens. There 
are a list of eases to try out 
available to you on GSAP’s 
resources page. There is also 
an Ease Visualizer that helps 
you understand how each 
function works and what would 
fit the needs of your current 
animation.

https://gsap.com/docs/v3/Eases/


Control Methods
There are functions that can manipulate the playback of 
our tweens.
By default, GSAP animations play automatically on page 
load. You can use control methods to have more control of 
your animation, like having an animation play, repeat, or 
reverse based on user interaction such as button click. 
Control methods work for tweens and also timelines. 
You can find a full list on the GSAP Docs page listed 
under methods. 



Sequencing in GSAP

Since our animations are automatically set to start on page load, we 
can create a timeline visualizer and add sequencing to our GSAP code 
to alter timing, delays, and transitions between our animations. 
The timeline is a container for our animated objects or “tweens”. By 
placing our “tweens” under the same sequence, we can control them 
together instead of manipulating the load time of each individual 
object in relation to each others animation runtime. 
The most important use of sequencing using a timeline allows our 
tweens to automatically adjust their time and delay based on the 
previous animation. 



Creating a timeline in GSAP:
Add the timeline to your project a variable at the beginning of 
your JS file. 

Sequencing in GSAP cont.

When using the timeline variable, you will change the “gsap.to()” 
animator to “tl.to()”. All objects that use the “tl” property will be 
included in this new timeline in order of appearance in our set up.
 
Ex:


	GSAP Introduction
	GSAP Installation
	NPM and CDN
	JS folder organization
	Using GSAP to trigger animations and interactions
	Animate using GSAP Functions
	Animation Configuration
	GSAP Ease Visualizer
	Control Methods
	Sequencing in GSAP
	Sequencing in GSAP cont.

